Resazurin as an electron acceptor in glucose oxidase-catalyzed oxidation of glucose.

نویسندگان

  • H Maeda
  • S Matsu-ura
  • Y Yamauchi
  • H Ohmori
چکیده

The behavior of resazurin (1) as an electron acceptor in glucose oxidase (GOD)-catalyzed oxidation of glucose under anaerobic conditions is described. When a mixture of 1, glucose, and GOD in phosphate buffer (pH 7.4, 0.1 M) was incubated at 25 degrees C, the resulting solution turned purple to fluorescent pink due to the deoxygenated product, resorufin (2). On incubation of 1 with GOD alone or with H2O2 under essentially the same conditions, no color change was seen, indicating that generation of 2 in the enzymatic reaction is brought about through reduction of 1 by the reduced form (GODred) of GOD, which was also supported by the voltammetric behavior of 1. However, it was found that the enzymatic transformation of 1 to 2 is of no practical use as an indicator reaction for glucose determination using only GOD due to a slow reaction of 1 with GODred. Based on a ping-pong type mechanism with a steady-state approximation, KM and kcat for 1 as an electron acceptor from GODred were estimated to be 15+/-1.3 microM and (5.0+/-0.5) x 10(-2) s(-1), respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resorufin as an electron acceptor in glucose oxidase-catalyzed oxidation of glucose.

Resorufin (1) has been found to act as an electron acceptor in glucose oxidase (GOD)-catalyzed oxidation of glucose. When a 1: 1: 1 mixture of solutions of 1 (5.0 microM), glucose, and GOD (4.0 mg/ml) in phosphate buffer (pH 7.4, 0.1 M) was incubated at 36 degrees C under aerobic conditions and the reaction was followed by a measurement of changes in fluorescence intensity due to 1, only two ty...

متن کامل

Preserved enzymatic activity of glucose oxidase immobilized on unmodified electrodes for glucose detection.

Glucose sensing electrodes have been realized by immobilizing glucose oxidase (GOx) on unmodified edge plane of highly oriented pyrolytic graphite (epHOPG) and the native oxide of heavily doped silicon (SiO2/Si). Both kinds of electrode show direct interfacial electron transfer due to the redox process of the immobilized GOx. The measured formal potential of the redox process agrees with that o...

متن کامل

Kinetic studies on enzyme-catalyzed reactions: oxidation of glucose, decomposition of hydrogen peroxide and their combination.

The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence ...

متن کامل

Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer.

This work demonstrates a new approach for building bioinorganic interfaces by integrating biologically derived silica with single-walled carbon nanotubes to create a conductive matrix for immobilization of enzymes. Such a strategy not only allows simple integration into biodevices but presents an opportunity to intimately interface an enzyme and manifest direct electron transfer features. Biolo...

متن کامل

Palladium nanoparticles supported on carbon black powder as an effective anodic catalyst for application in a direct glucose alkaline fuel cell

Palladium nanoparticles supported on carbon black powder (Vulcan XC-72) nanocomposite (Pd/C) are synthesized as the catalyst for the anodic oxidation of glucose for use in a direct glucose alkaline fuel cell (DGAFC). Characterization of the catalyst is carried out using physical and electrochemical methods. It is observed that Palladium nanoparticles are uniformly dispersed onto the carbon blac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical & pharmaceutical bulletin

دوره 49 5  شماره 

صفحات  -

تاریخ انتشار 2001